Normally, this website focuses tightly on airplanes and the equipment and services needed to keep them flying. However, on regular occasions, I receive questions about density altitude and light aircraft. A surprising number believe LSA perform less well than legacy airplanes in these conditions. (They’re wrong.) Since I also hear questions regarding techniques to fly in mountains, why not combine these two challenges? This information can be useful to anyone who flies any kind of aircraft anywhere in the world. To provide the best information, I went to an expert. I know a thing or two about airplanes but Paul Hamilton, founder of the Sport Aviation Center, is an expert trainer, not only writing and making videos on the subject for years but regularly providing flight instruction. Further demonstrating his versatility he does so in three-axis and weight shift. I asked Paul to compose a short lesson about density altitude and he quickly complied.
A Threat? Yes, Possibly! Density Altitude Commands Your Respect
It was a hot day (80 degrees Fahrenheit) at Lake Tahoe Airport (6,268 feet MSL). The airplane was loaded with a big guy (who reported 250 pounds) and nearly full fuel. We had a light tailwind because the airport has rising terrain to the south and we needed to take off to the north over flat terrain towards the lake. Applying full throttle, we began moving down the runway …rolling, rolling, rolling. It felt like eternity to accelerate and finally lift off and we were going way faster over the ground while climbing sluggishly over the marshland to the lake. Three of the basic performance problems which have led many General Aviation aircraft accidents were present here:
- High density altitude
- Max gross weight
- Tailwind
- “Pressure altitude corrected for temperature and humidity."
- Common sense definition – “less air” (density) resulting in reduced engine power plus faster takeoff, stall and landing speeds — because true air speed goes up.
At 8,000 feet density altitude, it takes about twice as long to lift off as it does from sea level.This is derived from various performance parameters, and it could be 7,000 foot density altitude but 8,000 feet is a good round number for this rule of thumb. Why is this? First, for every 1,000 feet increase in density altitude, the engine loses about 3% power or thrust. So at 8,000 feet density the 100 horse engine is only producing 76% of the thrust, a 24% loss of thrust. Second, if you rotate at 60 knots indicated airspeed at sea level, then at 8,000 foot density altitude your true airspeed (ground speed in calm air), rotation speed would be 68 knots. Keep in mind your visual reference to the ground speed for takeoff and landing is going to go up 13%. This is why people tend to stall during takeoff and landing, because they feel they are going faster than they normally do. Indicated airspeed, not true airspeed, is what counts in stall. Therefore, at 8,000 foot density altitude you have 24% less thrust and must get going 13% faster to rotate. All that weight and mass has to gain that much more momentum with significantly less engine power. Loose/loose or bad/bad situation. Now look at climb rate, your ability to get away from the earth. A 1,000 foot density altitude decreases climb rate by 8%. An 8,000 foot density altitude reduces climb rate by over 60%. The Koch Chart is the classic many use to determine performance and a well known standard. General aviation aircraft typically have great performance tables and graphs, but LSA and even more so, ultralights, may come with rather basic performance guidance so this Koch Chart is a great tool. Let’s go back to my original example and use the rule of thumb with the density altitude of 9,500 feet MSL, plus that tail wind of 10%. Takeoff speed will increase takeoff roll by 20% to the density altitude factor. Now you have just under three times the takeoff roll as you would at sea lever standard conditions. In such conditions, you will eat up a lot of runway to get off the ground.
Light-Sport Aircraft typically have good performance at high density altitudes because with the typical 100 horsepower and max gross weight or 1,320 pounds the power-to-weight ratio is better than larger, heavier aircraft.